Autoencoder – Meeting 2/16/2021

- Autoencoders are mainly used for labeling
 - Unsupervised learning, data is unlabeled, used for training purposes
- Needs a ground truth:
 - Something for the autoencoder to train on, so it has something to compare other data to
 - Ground truth data represents the normal conditions
- There is a hidden layer in this approach
- To run autoencoder on the Titan:
 - 1. Open Anaconda Navigator "anaconda-navigator" on the terminal
 - 2. Go to Environments, select the tf environment
 - 3. Open Jupyter Notebook
 - 4. File is IoTAE
 - 5. Steps to ML
 - a. Add CSV file for normal data
 - b. Add CSV file for test data
 - c. Normalize data (In [42]) everything is scaled between 0 and 1 so its all in the same range
 - d. The model is in In [50] 3 layers with a hidden layer in the middle
 - e. Model gets trained, the loss gets lowered (which is what we want)
 - f. Plot the distribution of the loss, want a good distribution to determine a threshold
 - g. To get better results, we can adjust the NUM_EPOCHS
 - 6. The reconstruction error/score is what we will use to separate anomalous data from normal data
 - X_Test first it is normal, then after you change it (because the model has been made) ONLY run lines 64 and 65

See comments – the script deals with one file that is split, we can get around this my removing that step

Should create our own python notebook file

Meeting 2/17/2021

- Algorithms we will consider
 - o Autoencoder
 - o DCNN
 - o GAN
 - Peak finding algorithm
 - o RANSAC
- Algorithms go into a black box which takes in anomalous data and output flagged anomalies

- •
- Autoencoder
 - Compute mean and variance
 - Mahalanobis distance between vectors
 - o Our autoencoder looks at loss mean and variance

• Limit the error, anomalous data is very infrequent – can allow for some anomalies in training

- •
- If the error is very far out, reject it
- Use a clipped MSE
- <u>https://stats.stackexchange.com/questions/350211/loss-function-autoencoder-vs-variational-autoencoder-or-mse-loss-vs-binary-cross</u> ???

- Peak finding
 - \circ $\;$ Medium filters used to try to reject peaks
- We also want to be able to compare the results of each algorithm
- Dr. Pearlstein can provide us with more energy usage data
 - It is unlabeled though

TODO:

- Clean up COMNETS dataset
 - Remove bad columns
 - Convert everything to decimal remove/parse out colons and extra commas between values in the same field
- Modify Adam's script
 - Take in two files separately instead of splitting one file into two (as discussed above and in code comments)
- Run the script with the COMNETS data, get output
- Meet with Raj, Adam, and Jitu to discuss results